

Integrated Visualization of Multi-sensor Ocean Data Across the Web

Flynn Platt¹, Charles Thompson¹, Joe Roberts¹, Vardis Tsontos¹, Chi Hin Lam², Sean Arms³, Nga Quach¹

- 1 Jet Propulsion Laboratory/California institute of Technology
- 2 Large Pelagics Research Center/University of Massachusetts-Boston
- 3 UCAR/UCP/Unidata

Motivation

Current State of Affairs

Its time in-situ caught up

- In-Situ paired with remote data
 - Provides "ground truth" measurements to support science, satellite mission Cal/Val, and decision support applications
- Accessibility of remote sensing data is incredibly high
 - DAACs have made high quality satellite data readily available
 - Projects like GIBS have made visual aggregation simple
- In-Situ data is on the rise
 - SPURS, OMG, EXPORTS and more are looking to existing national repositories (PO.DAAC) to provide similar exposure

The Complicating Factors

In-Situ data is messy

- Diversity and heterogeneity is inherent
 - Instruments often lack support for self-describing file formats (nc, hdf)
 - Paucity of metadata and/or standards compliant metadata
- Data stewardship is complicated
 - Post-hoc conversion mitigates diversity but places increased cost on DAACs and users
 - The data itself is put at risk as it may be integrated into tools and services at different stages of conversion
- Visualizing the data is complex
 - Large datasets (1,000,000+ data points in a track)
 - Unique patterns and sampling structures

Our Opportunity

Focused integration of diverse platforms

- Extend available technologies
 - Address key interoperability and data challenges
 - Focus on marine animal tagging data as a representative use case
 - NCEI .nc templates, ROSETTA, THREDDS, CMC, DMAS, Tagbase
- Engage stakeholders throughout the data lifecycle
 - Instrument manufacturers (Wildlife Computers)
 - End-User communities (researchers, application developers)
- Develop improved capacity to support field campaign data
 - Integrate new technology components within system workflows
 - Aim to infuse these workflows into DAAC level systems
- Address technical barriers to preservation and usability
 - Including eTag datasets
 - Explore efficient data transfer protocols and dynamic subsampling

Project Components

Use Cases

Deciding what our goals are

- Interviewed researchers and scientists specifically working with tagging data
 - PO.DAAC scientists and users
 - AGU 2016, Tuna Conference 2017, IOOS-ATN
 - Collected 34+ detailed use cases and workflow expectations
- Focused on end users (researchers/decision support)
 - Work with data providers to enable these needs
 - Compared existing interaction techniques from other projects
- Highlighted the need for dynamic data synchronization
 - Correlating subset of vertical plot data to horizontal position data
 - Distinguishing relevant large-scale features in remote data

eTag Sensors & Data

Biological "Gliders"

- Horizontally/Vertically resolved physical data
 - Minimally: light level, pressure/Z, temperature

- Every second or less (< 1 month)
- Every 30sec 2min (inter-season/annual)
- Up to 6 years of operation
- Easily collect 1 million data points per tag

Generate collections of tracks to study animals en masse

SPOT tag

Implantable Archival Tag

PAT tag on Bluefin Tuna

Rosetta from Unidata

Making data standard again

- Web-based data format transformation service
- Simple interface for converting ASCII to CF compliant netCDF
- Open source
- Uses a THREDDS library to support the Common Data Model
- Extensions for OIIP
 - Pop-up tag datasets
 - Daily summary datasets
 - Bulk transforms
 - Additional netCDF template support

The Data Management and Archival System

Storing data the old fashioned way

- Core of PO.DAACs archive/distribution capability
 - Developed at JPL
- Distributed system architecture based on modular services
 - Data retrieval, storage, access, and formatting
- Extensions for OIIP
 - New data handlers for tag datasets
 - Repackaging (via Rosetta)
 - Additional metadata tracking for new data types
 - Submit to Tagbase ingestion services
 - Expose new data types to external services (OPeNDAP, LAS, etc)

Tagbase

The database tags deserve

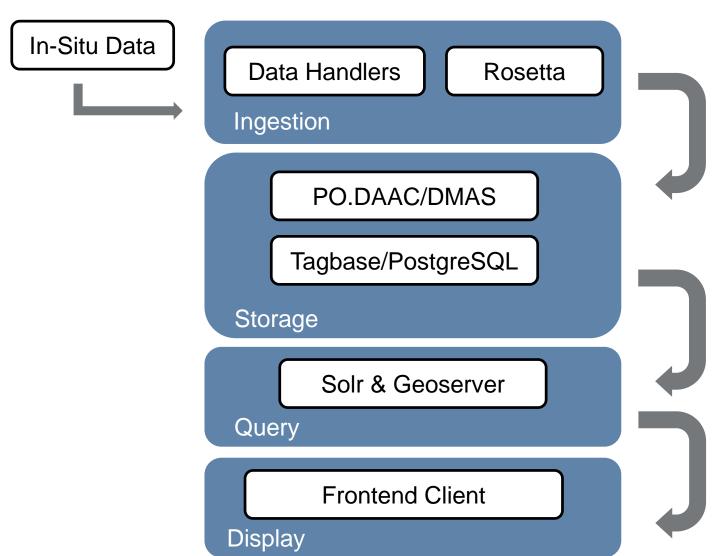
- Comprehensive data management solution
 - Support tags from various manufacturers
 - Can handle large dataset collections
 - Based on a unified data relational model that accommodates a suite of formats and metadata
- Provides an integrate set of tools for ingestion and inspection
 - Interact with graphical displays of data
 - Export to dynamically couple to GIS analysis packages
- Extensions for OIIP
 - Porting Tagbase to PostreSQL
 - Integration with DMAS at PO.DAAC

Solr & GeoServer

Reading data over the wire

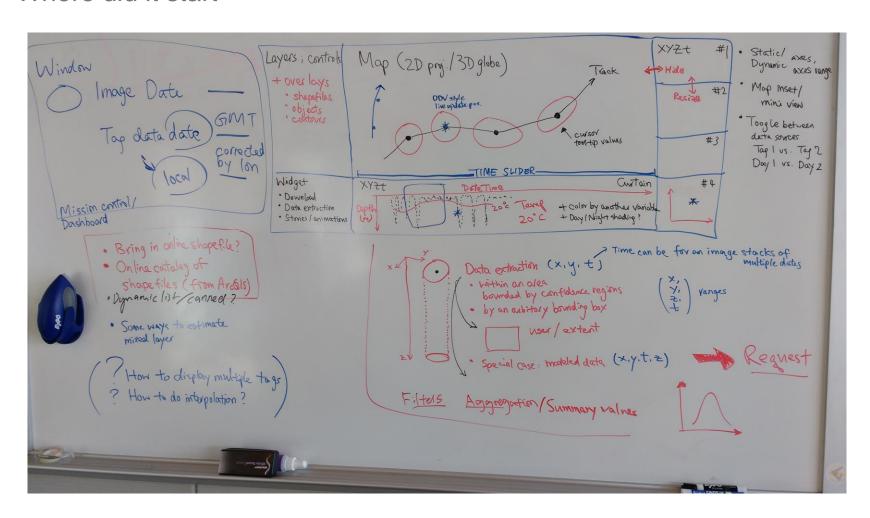
- Solr provides a thin indexing and query layer
 - Operates on top of an existing storage solution
 - Can be based on files or SQL database
 - Additionally provides some GIS querying
- GeoServer is a full-featured server for geospatial data
 - Integrated data services
 - Open source
 - OGC compliant
- These will comprise the backend of the user facing tool

The Common Mapping Client

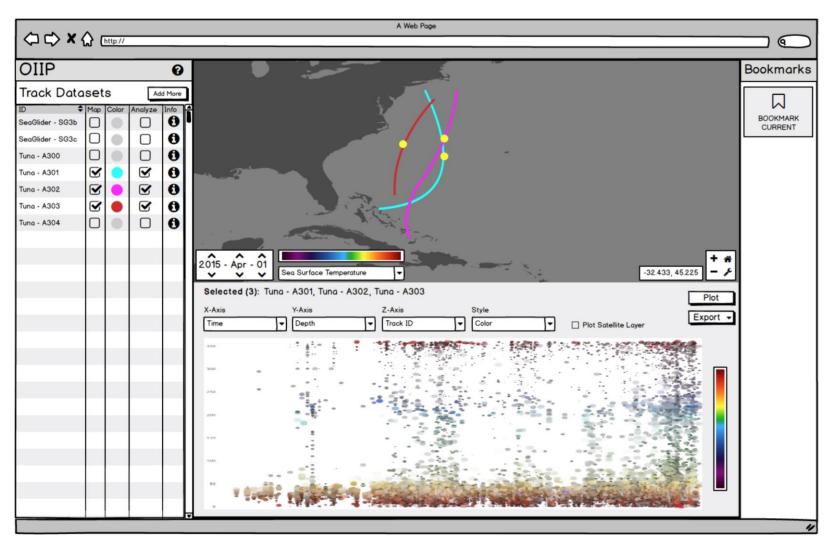

Reinventing the wheel so you don't have to

- Web application framework for geospatial visualization
 - Extend basic mapping capabilities to enable more informative interactions
 - Application design focused
 - Open Source*
- Supports diverse user groups and data sources
 - Oceanagraphy, carbon emissions, planetary exploration
- Extensions for OIIP
 - Explore charting support for primary, large scale datasets
 - Provide visualizations for additional data formats

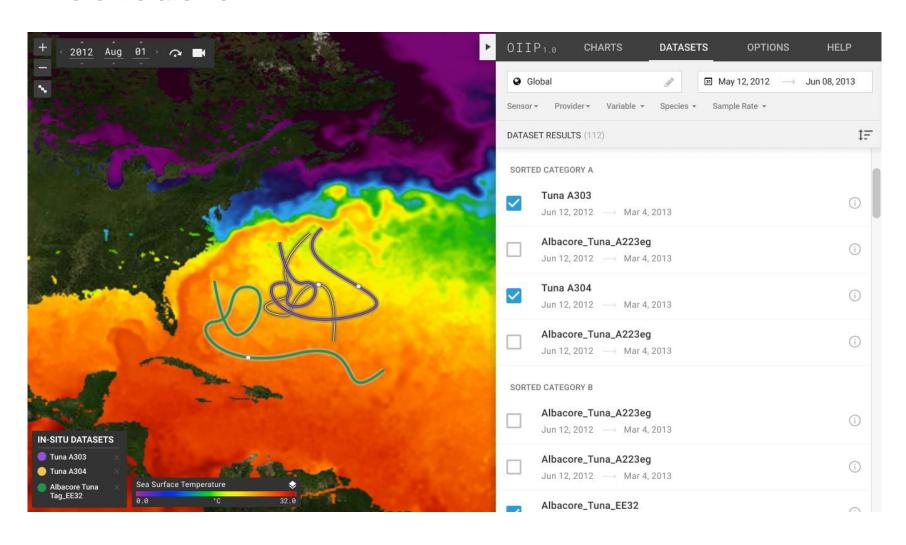
Less Text, Please


System Architecture

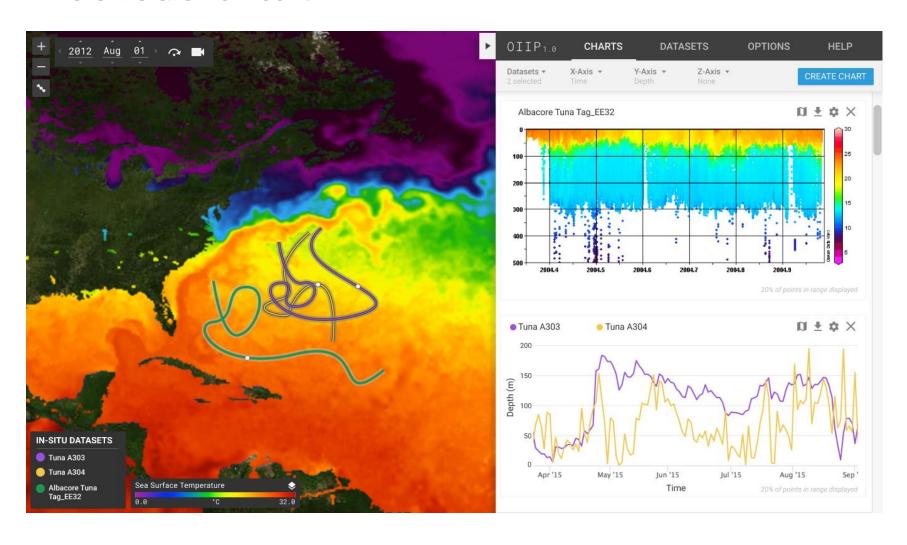
The big picture


User Interface Design

Where did it start


User Interface Design pt. 2

Sketching more ideas


User Interface Design pt. 3

Where we are now

User Interface Design pt. 4

Where we are now cont.

Thank You

https://oiip.jpl.nasa.gov/